

US009680161B2

(12) United States Patent

Yang et al.

(54) NOBLE METAL-BASED
ELECTROCATALYST AND METHOD OF
TREATING A NOBLE METAL-BASED
ELECTROCATALYST

(71) Applicant: The Board of Trustees of the

University of Illinois, Urbana, IL (US)

(72) Inventors: **Hong Yang**, Champaign, IL (US); **Jianbo Wu**, Savoy, IL (US)

(73) Assignee: The Board of Trustees of the University of Illinois, Urbana, IL (US)

(*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35

U.S.C. 154(b) by 279 days.

(21) Appl. No.: 14/331,697

(22) Filed: Jul. 15, 2014

(65) Prior Publication Data

US 2015/0017570 A1 Jan. 15, 2015

Related U.S. Application Data

- (60) Provisional application No. 61/846,553, filed on Jul. 15, 2013.
- (51) Int. Cl. *H01M 8/02* (2016.01) *H01M 4/92* (2006.01)
- (52) **U.S. Cl.** CPC *H01M 4/926* (2013.01); *H01M 4/921* (2013.01)

(10) Patent No.: US 9,680,161 B2

(45) **Date of Patent:** Jun. 13, 2017

(56) References Cited

U.S. PATENT DOCUMENTS

2011/0165496 A1* 7/2011 Shirvanian H01M 4/8642 429/483 2013/0133483 A1 5/2013 Yang et al.

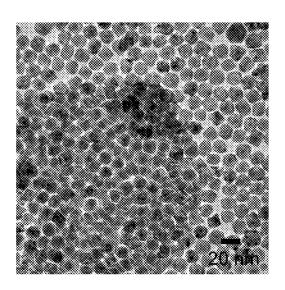
OTHER PUBLICATIONS

Adhikari, Hemant et al., "Metastability of Au—Ge Liquid Nanocatalysts: Ge Vapor-Liquid-Solid Nanowire Growth Far below the Bulk Eutectic Temperature," *ACS Nano*, 1, 5 (2007) pp. 415-422.

Andersson, Klas J. et al., "Adsorption-Driven Surface Segregation of the Less Reactive Alloy Component," *J. Am. Chem. Soc.*, 131, 6 (2009) pp. 2404-2407.

Baletto, F. et al., "Growth of Three-Shell Onionlike Bimetallic Nanoparticles," *Physical Review Letters*, 90, 13 (2003) pp. 135504-1-135504-4.

Callejas-Tovar, Rafael et al., Oxygen adsorption and surface segregation in (211) surfaces of Pt(shell)/M(core) and Pt₃ M (M = Co, Ir) alloys, *Surface Science*, 602 (2008) pp. 3531-3539.


(Continued)

Primary Examiner — Jacob Marks (74) Attorney, Agent, or Firm — Brinks Gilson & Lione

(57) ABSTRACT

A noble metal-based electrocatalyst comprises a bimetallic particle comprising a noble metal and a non-noble metal and having a polyhedral shape. The bimetallic particle comprises a surface-segregated composition where an atomic ratio of the noble metal to the non-noble metal is higher in a surface region and in a core region than in a sub-surface region between the surface and core regions. A method of treating a noble metal-based electrocatalyst comprises annealing a bimetallic particle comprising a noble metal and a non-noble metal and having a polyhedral shape at a temperature in the range of from about 100° C. to about 1100° C.

12 Claims, 6 Drawing Sheets

